Design of a Tumorigenicity Test for Induced Pluripotent Stem Cell (iPSC)-Derived Cell Products

نویسندگان

  • Shin Kawamata
  • Hoshimi Kanemura
  • Noriko Sakai
  • Masayo Takahashi
  • Masahiro J. Go
  • Michael J. Edel
چکیده

Human Pluripotent Stem Cell (PSC)-derived cell therapy holds enormous promise because of the cells' "unlimited" proliferative capacity and the potential to differentiate into any type of cell. However, these features of PSC-derived cell products are associated with concerns regarding the generation of iatrogenic teratomas or tumors from residual immature or non-terminally differentiated cells in the final cell product. This concern has become a major hurdle to the introduction of this therapy into the clinic. Tumorigenicity testing is therefore a key preclinical safety test in PSC-derived cell therapy. Tumorigenicity testing becomes particularly important when autologous human induced Pluripotent Stem Cell (iPSC)-derived cell products with no immuno-barrier are considered for transplantation. There has been, however, no internationally recognized guideline for tumorigenicity testing of PSC-derived cell products for cell therapy. In this review, we outline the points to be considered in the design and execution of tumorigenicity tests, referring to the tests and laboratory work that we have conducted for an iPSC-derived retinal pigment epithelium (RPE) cell product prior to its clinical use.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tumor-Free Transplantation of Patient-Derived Induced Pluripotent Stem Cell Progeny for Customized Islet Regeneration

UNLABELLED Human induced pluripotent stem cells (iPSCs) and derived progeny provide invaluable regenerative platforms, yet their clinical translation has been compromised by their biosafety concern. Here, we assessed the safety of transplanting patient-derived iPSC-generated pancreatic endoderm/progenitor cells. Transplantation of progenitors from iPSCs reprogrammed by lentiviral vectors (LV-iP...

متن کامل

Cell Transplantation for Spinal Cord Injury: Tumorigenicity of Induced Pluripotent Stem Cell-Derived Neural Stem/Progenitor Cells

Spinal cord injury (SCI) is an intractable and worldwide difficult medical challenge with limited treatments. Neural stem/progenitor cell (NS/PC) transplantation derived from fetal tissues or embryonic stem cells (ESCs) has demonstrated therapeutic effects via replacement of lost neurons and severed axons and creation of permissive microenvironment to promote repair of spinal cord and axon rege...

متن کامل

Tumorigenicity Studies of Induced Pluripotent Stem Cell (iPSC)-Derived Retinal Pigment Epithelium (RPE) for the Treatment of Age-Related Macular Degeneration

Basic studies of human pluripotential stem cells have advanced rapidly and stem cell products are now seeing therapeutic applications. However, questions remain regarding the tumorigenic potential of such cells. Here, we report the tumorigenic potential of induced pluripotent stem cell (iPSC)-derived retinal pigment epithelium (RPE) for the treatment of wet-type, age-related macular degeneratio...

متن کامل

Induced pluripotent stem cells (iPSCs) based approaches for hematopoietic cancer therapy

Induced pluripotent stem cells (iPSCs) are reprogrammed from somatic cells through numerous transcription factors. Human induced pluripotent stem cell approaches are developing as a hopeful strategy to improve our knowledge of genetic association studies and the underlying molecular mechanisms.  Rapid progression in stem cell therapy and cell reprogramming provides compelling reasons for its fe...

متن کامل

Deconstructing Stem Cell Tumorigenicity: A Roadmap to Safe Regenerative Medicine

Many of the earliest stem cell studies were conducted on cells isolated from tumors rather than from embryos. Of particular interest was research on embryonic carcinoma cells (EC), a type of stem cell derived from teratocarcinoma. The EC research laid the foundation for the later discovery of and subsequent work on embryonic stem cells (ESC). Both ESC isolated from the mouse (mESC) and then lat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2015